Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 709027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490038

RESUMO

Accurate survival prediction of breast cancer holds significant meaning for improving patient care. Approaches using multiple heterogeneous modalities such as gene expression, copy number alteration, and clinical data have showed significant advantages over those with only one modality for patient survival prediction. However, existing survival prediction methods tend to ignore the structured information between patients and multimodal data. We propose a multimodal data fusion model based on a novel multimodal affinity fusion network (MAFN) for survival prediction of breast cancer by integrating gene expression, copy number alteration, and clinical data. First, a stack-based shallow self-attention network is utilized to guide the amplification of tiny lesion regions on the original data, which locates and enhances the survival-related features. Then, an affinity fusion module is proposed to map the structured information between patients and multimodal data. The module endows the network with a stronger fusion feature representation and discrimination capability. Finally, the fusion feature embedding and a specific feature embedding from a triple modal network are fused to make the classification of long-term survival or short-term survival for each patient. As expected, the evaluation results on comprehensive performance indicate that MAFN achieves better predictive performance than existing methods. Additionally, our method can be extended to the survival prediction of other cancer diseases, providing a new strategy for other diseases prognosis.

2.
Biomed Res Int ; 2019: 9523719, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214619

RESUMO

Today, it has become a hot issue in cancer research to make precise prognostic prediction for breast cancer patients, which can not only effectively avoid overtreatment and medical resources waste, but also provide scientific basis to help medical staff and patients family members to make right medical decisions. As well known, cancer is a partly inherited disease with various important biological markers, especially the gene expression profile data and clinical data. Therefore, the accuracy of prediction model can be improved by integrating gene expression profile data and clinical data. In this paper, we proposed an end-to-end model, Attention-based Multi-NMF DNN (AMND), which combines clinical data and gene expression data extracted by Multiple Nonnegative Matrix Factorization algorithms (Multi-NMF) for the prognostic prediction of breast cancer. The innovation of this method is highlighted through using clinical data and combining multiple feature selection methods with the help of Attention mechanism. The results of comprehensive performance evaluation show that the proposed model reports better predictive performances than either models only using data of single modality, e.g., gene or clinical, or models based on any single NMF improved methods which only use one of the NMF algorithms to extract features. The performance of our model is competitive or even better than other previously reported models. Meanwhile, AMND can be extended to the survival prediction of other cancer diseases, providing a new strategy for breast cancer prognostic prediction.


Assuntos
Algoritmos , Neoplasias da Mama , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Neurais de Computação , Transcriptoma , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos
3.
Biomed Res Int ; 2018: 7538204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228989

RESUMO

The application of gene expression data to the diagnosis and classification of cancer has become a hot issue in the field of cancer classification. Gene expression data usually contains a large number of tumor-free data and has the characteristics of high dimensions. In order to select determinant genes related to breast cancer from the initial gene expression data, we propose a new feature selection method, namely, support vector machine based on recursive feature elimination and parameter optimization (SVM-RFE-PO). The grid search (GS) algorithm, the particle swarm optimization (PSO) algorithm, and the genetic algorithm (GA) are applied to search the optimal parameters in the feature selection process. Herein, the new feature selection method contains three kinds of algorithms: support vector machine based on recursive feature elimination and grid search (SVM-RFE-GS), support vector machine based on recursive feature elimination and particle swarm optimization (SVM-RFE-PSO), and support vector machine based on recursive feature elimination and genetic algorithm (SVM-RFE-GA). Then the selected optimal feature subsets are used to train the SVM classifier for cancer classification. We also use random forest feature selection (RFFS), random forest feature selection and grid search (RFFS-GS), and minimal redundancy maximal relevance (mRMR) algorithm as feature selection methods to compare the effects of the SVM-RFE-PO algorithm. The results showed that the feature subset obtained by feature selection using SVM-RFE-PSO algorithm results has a better prediction performance of Area Under Curve (AUC) in the testing data set. This algorithm not only is time-saving, but also is capable of extracting more representative and useful genes.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Máquina de Vetores de Suporte , Área Sob a Curva , Expressão Gênica , Humanos
4.
Biomed Res Int ; 2017: 1729301, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744460

RESUMO

Accurately annotating biological functions of proteins is one of the key tasks in the postgenome era. Many machine learning based methods have been applied to predict functional annotations of proteins, but this task is rarely solved by deep learning techniques. Deep learning techniques recently have been successfully applied to a wide range of problems, such as video, images, and nature language processing. Inspired by these successful applications, we investigate deep restricted Boltzmann machines (DRBM), a representative deep learning technique, to predict the missing functional annotations of partially annotated proteins. Experimental results on Homo sapiens, Saccharomyces cerevisiae, Mus musculus, and Drosophila show that DRBM achieves better performance than other related methods across different evaluation metrics, and it also runs faster than these comparing methods.


Assuntos
Algoritmos , Biologia Computacional/métodos , Proteínas/metabolismo , Animais , Bases de Dados de Proteínas , Drosophila/metabolismo , Ontologia Genética , Humanos , Camundongos , Anotação de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...